Solar Panel Detection in Satellite Images: A Pixel-Wise Approach

"Hot" Models To Detect Solar Panels

Lazenby MM and Shackleton RL

Motivation

Modelling

Detect and determine the solar

Results & Conclusion

Successfully implemented models

- density within the Tshwane Municipality area
- Develop machine learning models
- Important as it is an indication of the adoption of renewable energy in South Africa
- Large satellite image dataset available
- Develop a working framework that can be upscaled in the future and further research
- Developed shapefile to annotate satellite images for training / testing dataset
 Extracted RGB values and pixel class stored as data frame for training / testing
 Three models employed Random Forest (RF), Neural Network (NN) and Support
- Models trained trained model files stored for future predictions

Vector Machine (SVM)

- Predict satellite images using the three models. Output solar density and predicted image
- that detect solar density
 Training and prediction time
 proportionate to number of pixels
 RF run time ~ *x*NN run time ~ 94 *x*SVM run time ~ 3.5 *x*Performs well on a dissimilar pixel
 value to solar panels pixel value *Conclusion:* RF most satisfactory
 detection (best accuracy, fastest
 run time) *Limitations:* Overfitting evident
 due to pixel value overlapping.
 Exhaustive Computing Power

Metrics	Accuracy (%)	Specificity (%)	Sensitivity (%)
Random Forest	94.3	94.6	94.1
Neural Network	93.4	94.3	92.5
Support Vector Machine	91.3	92.4	90.1

Table 1: Model accuracy metrics and veridicality

Figure 1: The original Satellite image of an area

Figure 2: Pixel prediction overlaid on the original image

Department of Computer Science

Faculty of Engineering, Built Environment and Information Technology

Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo

Capstone Project – MIT 808

Course Coordinators:

Dr. Vukosi Marivate (vukosi.marivate@cs.up.ac.za) Abiodun Modupe (Abiodun.modupe@cs.up.ac.za)

