Object detection is hard. But

even on lower quality images,

masks still allowed 40% detection

Identifying and counting commercial solar installations in South Africa. RESULTS

- INTRO
- South Africa's electricity generation woes have continued to deteriorate recently, leading to enhanced vigor in the pursuit of renewable sources like solar energy.
- This form of electricity generation already has some foothold in some areas, but accurate information on the spread of solar panel installations is unavailable.
- By leveraging computer vision and satellite images, this project aims to equip the Tshwane
- Out of the 240 labeled and masked solar panel objects on the 211 validation image blocks, 119 (i.e. 50%) were identified correctly using the model predictions, whilst a further 232 model solar panel detections were false positives (i.e. not actually a solar panel based on solar panel object masks).
- Out of the 196 labeled and masked solar panel objects on the 192 stability testing image blocks, 84 (i.e. 43%) were identified correctly using the model predictions, whilst a further 215 model solar

Figure 1: Cropped validation image object visualization (left) and cropped validation image prediction (right).

municipality with information on the number and density of solar panels.

METHODS

- 1. Google Earth Pro image collection,
- 2. Object Masks for placement info
- 3. COCO format for object capturing
- 4. Detectron2 Package for actual and prediction visualizations, model build and predictions
- 5. Streamlit for application deployment

panel detections were false positives (i.e. not actually a solar panel based on solar panel object masks).

DISCUSSION

- Modelling attempts were made on raw images without masked solar panel objects but proved to be extremely susceptible to predicting false positives.
- To improve the final modelling results, higher resolution aerial images can be used to train the model but would also require more computational

Figure 2: Overall view of Streamlit application (left) Alternate zoomed in map view (right).

Table 1 showing top 10 solar panel detections per 0,2 km² for areas in the Pretoria Old East area

Rank	Suburb	Solar Panel Detections	Potential Energy (KWh)
1	Hatfield	93	2604
2	Arcadia	90	2520
3	Pretoria Central	73	2044
4	Erasmus Park	71	1988
5	Sunnyside	64	1792
6	Muckleneuk	58	1624
7	Alphen Park	51	1428
8	Groenkloof	49	1372
9	Ashlea Gardens	49	1372
10	Berea	47	1316

Scan me

MH van Staden, Tsepang James Polaki

resources.

Department of Computer Science

Faculty of Engineering, **Built Environment and** Information Technology Fakulteit Ingenieurswese, Bou-omgewing en

Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo Capstone Project - MIT 808

Course Coordinators: Dr. Vukosi Marivate (vukosi.marivate@cs.up.ac.za) Abiodun Modupe (abiodun.modupe@cs.up.ac.za)

